Hong Kong Baptist University Faculty of Science – Department of Physics

Title (Units):	PHYS 2017	MATHEMATICAL METHODS FOR PHYSICAL SCIENCES II (3,3,1)
Course Aims:	This course propreparation for & Nuclear Physical the use of math their math skills	ovides students with the necessary mathematical knowledge in studying further courses in physical sciences, such as Atomic sics, Quantum Mechanics and Solid State Physics. It illustrates ematics in physical sciences context so that students can apply s in a practical situation.
Pre-requisite:	PHYS2016 Ma	athematical Methods for Physics Sciences I or consent of

Course Reviewed by: Prof. Chang-song Zhou, Dr. Wing Kee Mok and Prof. Shu Kong So

Course Intended Learning Outcomes (CILOs):

No.	Upon successful completion of this course, students should be able to:
1	Describe theory and methods of linear algebra, Fourier series and Fourier transform, and partial differential equations and their applications in physical problems.
2	Solve linear equations and perform basic matrix operations such as multiplication.
3	Obtain Fourier coefficients and Fourier series for periodic functions and perform Fourier transforms.
4	Apply the method of separation of variables to partial differential equations and solve boundary value problems for Laplace equations.

Teaching & Learning Activities (TLAs)

CILOs	TLAs will include the following:			
1.4				
1-4	• Students will learn the basic theory and methods and application of the			
	methods to example problems by attending lectures, reviewing lecture notes			
	and doing textbook reading assignments.			
	Students will learn how to derive linear and differential equations for physical			
	problems and how to apply the methods to solve the problems.			
2-4	• Students will develop the skills of applying the methods through quizzes in			
	tutorial classes, homework assignments, semester tests and course			
	examination.			

Hong Kong Baptist University Faculty of Science – Department of Physics

Assessment Methods (AMs):

Type of Assessment	Weighting	CILOs to be	Description of Assessment Tasks
Methods		addressed	
One 1-hour semester	50%	1-4	One 1-hour Test, Tutorial Assessment and
Test, Tutorial			Continuous Assessment are designed to
Assessment and			measure how well the students have
Continuous			learned the basic concepts, fundamental
Assessment			theory and methods of linear algebra, and
			Fourier series and transforms with
			application in a physical context.
Final Examination	50%	1-4	Final Examination questions are designed
			to see how far students have achieved
			their intended learning outcomes.
			Questions will primarily be analysis and
			skills based to assess the student's
			versatility in solving physically relevant
			problems in linear algebra, Fourier series
			and transform and partial differential
			equations.

Learning Outcomes and Weighting:

Content		CILO No.	Teaching (in hours)
I.	Linear algebra	1, 2	12
II.	Fourier series and Fourier transforms	1, 3	12
III.	Partial differential equations and series solution to	1, 4	12
	differential equations		

Textbook:	Mary L. Boas, Mathematical Methods in the Physical Sciences, 3 rd Ed., Wiley, 2005.
References:	 D.A. McQuarrie, Mathematical Methods for Scientists and Engineers, University Science Books, 2003. G. Arfken and H.J. Weber, Mathematical Methods for Physicists, 6th Ed., Academic Press, 2005.
	3. K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical Methods for Physics and Engineering, 3 rd Ed., Cambridge University Press, 2006.

4. P. Dennery and A. Krzywicki, Mathematics for Physicists, Dover, 1996.

Hong Kong Baptist University Faculty of Science – Department of Physics

Course Content in Outline:

	Topic	Hours
I.	Linear algebra	12
	A. Linear equations: row reduction, Cramer's rule	
	B. Matrix and determinant	
	C. Matrix operation, eigenvalues and eigenvectors	
	D. Linear vector space	
II.	Fourier series and Fourier transforms	12
	A. Periodic functions and their Fourier series representations.	
	B. Fourier transforms with applications.	
	C. The Dirac delta function.	
III.	Partial differential equations	12
	A. Laplace's equation, Poisson's equation, the diffusion equation and wave	
	equations.	
	B. The method of separation of variables.	
	C. The Laplace equation in rectangular, spherical and cylindrical coordinates.	
	D. Series solutions to differential equations	
	C. Legendre polynomials and spherical harmonics.	